How to Scrape and Parse IMDb Using IMDbPY (Examples Included)IMDbPY is a Python package designed to access and manage data from the Internet Movie Database (IMDb). It provides a programmatic interface to retrieve movie, person, and company information, parse data files, and build local databases. This guide covers installing IMDbPY, basic usage, scraping considerations, parsing techniques, examples for common tasks, best practices, and troubleshooting.
Table of contents
- What IMDbPY does and legal/ethical considerations
- Installation and setup
- IMDbPY data sources: web vs. data files vs. local SQL database
- Basic usage examples (search, get movie/person data)
- Advanced scraping: batch downloads, crawling strategies, rate limiting, and proxies
- Parsing and cleaning IMDb data (fields, relationships, and normalization)
- Storing results: using SQLite and SQLAlchemy
- Example projects (movie info CLI, top-rated movies exporter, person filmography analyzer)
- Performance tips and common pitfalls
- Troubleshooting and further resources
What IMDbPY does and legal/ethical considerations
IMDbPY provides tools to:
- Search IMDb and retrieve structured data (movies, people, characters, companies).
- Parse the plain text IMDb data files (when available) into Python objects or a local SQL database.
- Build and query a local database with SQLAlchemy or sqlite for offline analysis.
Legal/ethical considerations:
- IMDb’s terms of service restrict automated scraping of their website. Prefer using the official IMDb datasets (available at datasets.imdbws.com) or IMDbPY’s parsers for the data files rather than scraping the live site.
- Respect robots.txt and rate limits. When hitting web endpoints, throttle requests and use caching to avoid overloading servers.
- For commercial use, verify licensing and IMDb’s terms; consider alternatives or obtain permission.
Installation and setup
Install IMDbPY via pip:
pip install IMDbPY
IMDbPY works with Python 3.7+. Verify installation:
import imdb print(imdb.__version__)
Optional dependencies:
- SQLAlchemy (for local DB support):
pip install SQLAlchemy
- Requests and other HTTP libraries are used internally; keep them updated.
IMDbPY data sources: web vs. data files vs. local SQL database
- Web access (IMDb web): IMDbPY can query IMDb’s web interface to fetch movie and person pages. This may be subject to scraping restrictions and is slower.
- IMDb data files (official datasets): IMDb provides plain text data files (title.basics.tsv.gz, name.basics.tsv.gz, title.ratings.tsv.gz, etc.). IMDbPY includes parsers to load these into a local database. This is the preferred method for bulk analysis.
- Local SQL database: IMDbPY can store parsed data in SQLite/MySQL/PostgreSQL via SQLAlchemy. This enables fast, complex queries.
Basic usage examples
- Create an IMDb instance and search for a title:
from imdb import IMDb ia = IMDb() results = ia.search_movie("Inception") for r in results[:5]: print(r.movieID, r['title'], r.get('year'))
- Get full movie details:
movie = ia.get_movie(results[0].movieID) print(movie['title'], movie.get('year')) print("Directors:", [d['name'] for d in movie.get('director', [])]) print("Genres:", movie.get('genres')) print("Cast:", [c['name'] for c in movie.get('cast', [])[:10]])
- Get person information:
person = ia.get_person('0000206') # e.g., Brad Pitt's personID print(person['name']) print("Filmography:", person.get('filmography'))
Note: For web queries, IMDbPY fetches web pages; responses include limited fields unless you request full info sets (see advanced usage).
Advanced scraping: batch downloads, crawling strategies, rate limiting, and proxies
- Prefer official IMDb datasets for bulk: download TSV.gz files from IMDb datasets site and parse with IMDbPY’s data parsers.
- If you must use web scraping via IMDbPY:
- Use a delay between requests: time.sleep(1–3) or exponential backoff.
- Cache results locally to avoid repeated calls.
- Use rotating proxies and randomized user agents only if compliant with IMDb’s terms and local laws.
- Limit concurrency; single-threaded requests are safest.
Example: simple rate-limited fetcher
import time from imdb import IMDb ia = IMDb() def safe_get_movie(mid): retries = 3 for i in range(retries): try: return ia.get_movie(mid) except Exception as e: time.sleep(2 ** i) return None movie_ids = ['1375666', '0241527'] for mid in movie_ids: m = safe_get_movie(mid) print(m and m.get('title')) time.sleep(1.5)
Parsing and cleaning IMDb data
When using TSV datasets:
- Use pandas or IMDbPY parsers to load files.
- Normalize titles (original vs. primary), handle missing years, and standardize genres.
- Map name IDs to titles via join between name.basics and title.principals.
Example using pandas:
import pandas as pd titles = pd.read_csv('title.basics.tsv.gz', sep=' ', dtype=str, na_values='\N', compression='gzip') ratings = pd.read_csv('title.ratings.tsv.gz', sep=' ', dtype=str, na_values='\N', compression='gzip') titles = titles.merge(ratings, how='left', on='tconst') titles['averageRating'] = pd.to_numeric(titles['averageRating'], errors='coerce') top_movies = titles[titles['titleType']=='movie'].sort_values('averageRating', ascending=False).head(50)
Cleaning tips:
- Treat ‘\N’ as null.
- Convert types (years, runtimes, ratings) early.
- Split multi-value fields (genres) into lists for analysis.
Storing results: using SQLite and SQLAlchemy
IMDbPY can populate a SQL database directly. Example creating a local SQLite DB:
from imdb import IMDb from imdb.tools import imdbsql ia = IMDb() dbfile = 'imdb_data.sqlite' # imdbsql usage depends on version; alternatively parse TSVs and use SQLAlchemy directly
Alternatively, load TSVs into pandas and write to SQLite:
import sqlite3 conn = sqlite3.connect('imdb_local.db') titles.to_sql('titles', conn, if_exists='replace', index=False)
Then query with SQL for fast lookups.
Example projects
- Movie info CLI
- Input: title or ID -> Output: year, director, main cast, rating, plot.
- Use ia.search_movie + ia.get_movie and cache responses.
- Top-rated movies exporter
- Parse title.basics + title.ratings -> filter movies with >= 10000 votes -> export top N to CSV.
- Person filmography analyzer
- Use name.basics and title.principals to build career timelines, frequent collaborators, and genre distributions.
Code snippets for a CLI (simplified):
from imdb import IMDb, IMDbDataAccessError ia = IMDb() def movie_info(title): r = ia.search_movie(title) if not r: return None m = ia.get_movie(r[0].movieID) return { 'title': m.get('title'), 'year': m.get('year'), 'directors': [d['name'] for d in m.get('director', [])], 'rating': m.get('rating'), 'plot': m.get('plot')[0] if m.get('plot') else None }
Performance tips and common pitfalls
- Avoid excessive web requests; use datasets for bulk tasks.
- IMDbPY’s web access may return partial info—use get_movie with info sets when needed.
- Watch for ID vs. canonical title mismatches (tconst vs. title strings).
- Large TSV files require adequate memory—use chunked processing or databases.
- Keep IMDbPY and dependencies updated; API behavior and dataset formats can change.
Troubleshooting
- “No module named imdb”: ensure package installed in the same environment (pip vs. conda).
- Missing fields: fetch full info sets or parse datasets.
- Slow reads of TSVs: use chunking or sqlite for intermediate storage.
Further resources
- IMDb datasets page (official TSV files) — preferred for bulk.
- IMDbPY documentation and GitHub repo for latest examples and issues.
- pandas, SQLAlchemy docs for data handling and storage.
If you want, I can convert one of the example projects into a complete script (CLI or Jupyter notebook) with runnable code and sample outputs.
Leave a Reply